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DYNAMIC CONTACT PROBLEMS FOR AN ORTHOTROPIC ELASTIC HALF-PLANE 

AND A COMPOSITE PLANE* 

E.L. NAKHNEIN and B.M. NULLER 

The equivalence properties of certain boundary-value problems are 
studied for ortho- and isotropic elastic domains in stationary subsonic 
dynamics and statics. By using these properties, solutions obtained 
earlier inexplicit form for dynamic contact problems for an isotropic 
half-plane with four, and a composite half-plane with six, kinds of 
boundary conditions /l/ are extended to the case of an orthotropic 
material whose characteristic equation has pure imaginary roots. An 
analogous problem is solved for an arbitrary orthotropic half-plane by 
constructing new complex potentials. The existence and uniqueness of 
the real root of the Rayleigh equation governing the rate of surface 
wave propagation in an orthotropic half-plane with a free boundary are 
proved. The problem of the breaking of a totally adherent stamp from an 
orthotropic half-plane is solved in terms of elementary functions. The 
existence of a single delamination section is proved its length is 
found, and the contact stresses are calculated. 

Savin /2/ and Galin /3/ first examined static mixed problems for an anisotropic half-plane 
with the simultaneous formulation of two kinds of boundary conditions. The corresponding 
dynamic stationary problems, with the exception of problems with total adhesion conditions, 
can be solved by uing Barenblatt-Cherepanov potentials /4/. 

1. Let .IZ~, y be rectangular Cartesian coordinates for which the directions of the axes 
coincide with the principal elasticity directions of an orthotropic plane, z = .zl - ct, y is 
a coordinate system moving at constant velocity c with respect to this plane, and t is the 
time. 

We define stationary deformations of the plane in the x, y system by equilibrium equations, 
the generalized Hooke's law, and the condition of continuity 

where pjk are orthotropy coefficients and 11 is the density of the material. 
Combining the derivatives with respect to x and using the last equalities in (1.2) and 

(1.31, we can write (1.1) in a form without inertial terms 

&*/ds + Bs.&Jy = 0, d&dx -+- do,*/dy = 0 

c, * = a, - au', uy* = (1 - cPBB)-l (a, fan'), U' = i3U/az 
(1.4) 

Substituting (1.4) into (1.2) we obtain Hooke's law for the new "orthotropic" plane with 
"stresses" ax*, ay*, tXll 

(1.5) 

An analogous relation holds in the spatial problem. 
Eqs.(1.3)-(1.5) agree, in form, with the statics equations for the orthotropic plane 

(l.l)-(1.3) with c = 0. Consequently, a static problem for the same domain with the previous 
conditions for the displacements and shear stresses corresponds to a boundary-value problem 
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for an orthotropic domain in 
which depend on the inertial 

a dynamic formulation but with different orthotropy coefficients 
parameter a 

of conditions on the stresses 
and other kinds of boundary conditions in place 

cs9 cY governed by (1.4). In this sense the problems examined 
are equivalent and the same methods are applicable to them if they do not rely on the symmetry 
of Hooke's law because ylz # ysl. The method of complex potentials belongs to such methods: 
its underlying Eq.(1.3) is common for (l.l)-(1.3) and (1.3)-(1.5). 

2. Let us use the Lekhnitskii potentials in terms of which the solution of the "static" 
problem (1.3)-(1.5) is expressed in the form /5/ 

Here (ph. (z~) are functions analytic in the zh- plane, and kh- are the roots of the equation 

Y11P' -1 (YU i- y21 + VGi,) P" YE = 0 (2.3) 

such that p,# +, Im pK > 0. Solutions for multiple and real roots are not examined. They 
correspond to cases of an exceptional combination of orthotropy parameters (isotropy in 

particular) and losses of the ellipticity of the system of elasticity theory equations, which 
requires a change in the form of the solution (2.1). 

Changing to stresses in theoriginal dynamic8problem(l.l)-(1.3), we obtain according to 

(1.4) 

The remaining components retain their form (2.1). 

3. The solution of (2-l)-(2.3) loses meaning formally for a real root pli because the 
plane zh degenerates into the line y = 0. In substance this occurs because, being analytic; 
it describes only fairly smooth deformation fields characteristic for subsonic regimes. In 
the isotropic plane the boundary of such regimes is determined by the shear wave velocity 
c* = (&$&'J, In an anisotropic material the magnitude of the wave velocity depends on its 
direction; consequently,the ellipticity boundary of the system of elasticity equations for this 
material cannot be expressed in terms of some wave velocity by a universal formula. From 
physical considerations it is conceivable that the ellipticity upper boundary might be the 
least c* from the plane longitudinaldilatation wave velocityc, and shear wave velocity cz. 

Since a planedilatation wave is symmetric while a shear wave is skew-symmetric about the 
x-axis, they can be considered as "surface" waves in the orthotropic half-plane y<u, re- 
spectively, for slipping and antislipping support of the boundary y = 0. Applying a bilateral 
Laplace transformation in X to (l.l)-(1.3), we obtain the characteristic functionsRr = Rk(c)- 

1’1-_, 1; z 1, “, whose zeros have the form c1 = I/Elf) (p,,' - p12’)1-‘/~. cp = (pPeo)-“* from 
the conditions 1) T,,~ = U' = U and 2) cII = U' :: o for y=O. Analysis of (2.2) confirms 
that because of the change in sign of the quantity y,,y22 from plus to minus (yzz = PP&?~(c) 
R,2c)) when c passes through c* ~7 rnin (cl, cz) , at least one of the roots n.h. will become real 
for C;‘ c*, and ellipticity is lost. Examples of orthotropy can be mentioned when this 
would even occur for c<c*. Later just the "subsonic" regime c F IO.c*) will be considered. 

We similarly obtain the characteristic functions (and Rayleigh equation) 

R, (c) = If, (c) (1 - &) - c@“R, (c) = u 

If, (c) z= \,~~Cz-~R1 (c) -i_ J,‘Tj;;c,-“R, (c) = 0 

from the conditions 3) TVy = Gy = 0 and 4) I( = r; = 0. 
The real zeros of these functions, if they exist and do notgeneratereal roots of (2.2), 

determine the surface wave velocity in the free and clamped half-planes; the functions Rh. (c) 
themselves occur in the solution of mixed problems for an orthotropic half-plane (see Sects. 
4 and 6). 
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4. We will investigate the zeros of the function X,(c) for c E (O,c*). If c2 < C1? 
then c* = cl. Ii, (c*) = -_LIc~*&R, (c,) < 0; if c2 > Cl, then c* = c,, R, (c*) = P12‘ (I%,' - PO') ’ I(, 

(c,) ( 0; if cE = c,, then the function R, (c) = II - a (fill r PO)1 R, (c) is equivalent to 
an infinitely small AR,(c) as c +c* - 0, where A = (& f ~22~0)(~,2~ - &,')-'< 0, and is 
therefore negative. In all cases R3(U) = I, and therefore, the zero c = cn of the function 
R, (c) exists in the interval (0, c*). 

To prove its uniqueness it is sufficient to prove that R’ (a,)<(), where R(a)= R,(c), 
a, = pc~“. 

Differentiating with respect to a and taking into account that R(a,)= 0 we obtain 

I?' (a,) = -_(&R,* i- &lR,* + ‘/ZP @I’ - csa) cRz (&‘&*)-‘I), nk’ = Rk (CR) 

therefore R' (a,)<0 for cI >- c*. 
Let c, < cz. Since A (CL*) = 0, we have 1 - &p,> 0. 

a . E (0. PII-‘), R* (a) = fl, Cc) (1 - NL) + a R, Cc) PO > 0 

for a E (0. &-I), the zeros of the functions P (a) =; R+ (a)R (CC) = (1 - c&)PR,a (c) - CL*~~,,R,~ (c) and 
A (a) coincide in (0. &-'1; if P'(a,)< U, then R' (a+) < 0 also. 

We will assume the opposite: P'(u,)>o. We introduce the quantities E= Sesa, and X= 
c&-a that vary in the domain O<F<I, x)l,~x<i. It follows from the condition P(ct.)=O 

that P,,' = (I - E) (fiBB - &)* (t - eX)-+-2. Hence and from the condition ~'(a,)>0 we obtain 

or by using the estimates I- ~,la.>l), 1 --x<O, we obtain the inequality 

,6*1 c;l+,,, B = (2 - e - 3EX + Z&Q) (1 - x)-V* (4.1) 

that is satisfied only for B>O. Let B > 0, B," = CBJ, then C > 0, BB,,>Cl& Taking into 
account that ca2 = XCIZ, we hence have C (B - xl Bls* > BB,,a or B>x or E=r.N, where N>i. 
By virtue of (4.1) the function 

f (E, il, N) = 2 - E - 3&x + Ze% - e*x (I - X) iv 

should have a zero in the domain e~(0, 1),x> 1, N 2 1. 
We introduce the function f1(6, x)=~(E,x,~). In the new variables h- f - e,p= x- I we 

obtain 
f1 (6 x) = 0" - P) (2h - p) + hp (3h- ZP + hP), h E (0, i), P > 0 

It follows from the condition ex<i that hp)h-p. Setting hp= h - CL+ t, t>U, we 
obtain f1 (E, x) = t(h + 1). Since f1 (e, x) > 0 for all e,x,N, the function f(e,x,N) is positive 
where it should have a zero. This contradiction shows that R'(a,)<O. 

Therefore, a real root of the equation R,(c) = 0 exists and is unique in the interval 
(0, c*) . The result obtained is a solution of the problem formulated in /4/. However, the 
question as to whether a wave exists that propagates in an orthotropic half-plane at the 
Rayleigh velocity CaE(o,c*) for any elastic characteristics pjr, can be answered affirm- 
atively only by proving that (2.2) has no real root for c = CR. Such a proof has been 
obtained and will be published separately. 

According to (3.1) there are no zeros of the function R,(c) in the interval (O,c*)there- 
fore, stationary waves do not exist in a clamped orthotropic half-plane, including the iso- 
tropy case /l/. 

5. If the roots of (2.2) are purely imaginary pr = iv,, Y, # ve then still another 
analogy exists between the stationary dynamics problems (l.l)-(1.3) for orthotropic and iso- 
tropic domains. To clarify it we turn to (1.3)-(1.5) which we solve in the new form 

where y. ql. qa, A,, ., A, are real numbers. Equating multipliers of the functions (Ph. (zk) in 
the four corresponding expressions of (5.11 and (2.11, (2.3), we obtain successively 

Since these seven coefficients (real only for imaginary roots of (2.2)) must satisfy 
eight conditions, an additional constraint arises 

PIS1~2'2 = P2%Vlrl (5.3) 
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It can be shown that it is always satisfied. 
Indeed, using the notation 

P = P~SPS~S - PzFav~r~, Xh. = Pk i- fa.9 (5.4j 

we obtain Tt = I- cqk, Sk == YkXk from (2.3) and (2.1) by virtue of (2.2). Hence and from (5.4) 
it follows that 

IJ = VlYS (PI - Pz) (?%I 4 Pl i Pz - ax1xa) 

Taking into account that pk -= yt2 - vh2y1, and according to (2.2) by the Viete formulas "*lyzZ.= 

Y%YL’? VI* + ?2 = Yi’ he + Ye1 -: YseL we obtain 

p = yIy* (PI - Pz) hz - YI1 - a (%1Yzn - YlZY21 - YesYdl = (’ (5 5) 

since the content of the square brackets vanishes identically on substituting expressions 
(1.5) in place of Yih * 

*part from unimportant factors .4,, the solution (5.1) and (5.2) is identical in form with 

the solutions of stationary dynamic problems for isotropic half-planes and a composite plane 
/l/. Hilbert-Riemann boundary-value problems corresponding to mixed conditions of four and six 

kinds.that govern the contact of the half-plane boundary and the composite plane edges with 
different stamps and cover plates are formulated and solved in /l/. In order to write down the 
solution of the same problem, say, for an orthotropic half-plane, the functions U' = U,,(X), U' = 

~2~ (5), etc. given for y= 0 in /l/ must be replaced by the functions A,u,(.r)‘, A,v,,(.c), ..,, the 
coefficients A,, A,, . ., q2 must be calculated by means of (5.2) and we must put p = 1. In con- 
formity with (5.1), the quantities A+', A,u', etc. will be components of the solution obtained; 

unlike /l/ they do not degenerate for c = 0 (excluding the isotropy case, of course) and 

therefore include the static problem. 

6. Let the roots of (2.2) be complex. We change to the form (2.1), (2.3) and construe 

a solution of the problem for an orthotropic half-plane y< 0 on sections L,, _, L, for 

which the boundary ( y = 0) contact conditions (Lj il Lk = (1 for j+ k) are posed 

We note that by partitioning the boundary conditions into symmetric and skew-symmetric 

ones, the problem for a homogeneous orthotropic plane weakened by a system of rectilinear 
slits on whose opposite edges and outside the slits identical conditions of nine kinds are 
posed in the form of the given functions 

is reduced to two such problems. 
They govern the contact between the edges with inextensible flexible stringers and com- 

pletely ahderent or slipping rigid stamps, as well as their mutual comb-like adhesion and 

contact through the slipping or welded stringers embedded in the slit; If1 is the jump in 

the function j(x). 
Following /l/, we set 

l/Z~k (z) = ALI@ (z) +- 2ik2f6 (z), 3 (z) = @T(z), z = .z 4 iy (t;.“) 

where A,1 are arbitrary complex constants, (P(z) is a piecewise analytic function for which 

the conditions of the problem a jUIItp occur on L, and conditions of the Riemann problem on L,. 
If the boundary values of the functions (6.1) are sought in the form 

(-I)&, = 2Re[ak (CD+ (5) - rD- @))I, .z E L,, k = 1, 2 (6.3) 

-ur' = 2Re lo+,@+ (5) - at,@- (5)1, 0111cc22 = ctlZccpl, z E L, (6.4) 

where cck and ok1 are complex numbers, then these conditions are satisfied for ImSfO and 

Irnfl#u because we have by virtue of (6.3) and (6.4) 

cl,, - SU,, = -a, (S - S) (Q+ (x) - W(x)), S = -azaIml, 2 E L, (6.5) 

ul’ + muL,’ = (alI + gasI) D+ (2) - (aI2 + Wa,,) @- (z), z E L, (6.6) 

N = -allapl-l = -a12a22-1 
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Let us calculate the coefficients in (6.2)-(6.6). We substitute (6.2) into (2.3). Equating 
factors for the functions CR+(z) and CD-(z) in (2.3) and (6.3), we obtain 

I&4,, + I@,, = --cl,411 - Y*421 = a1 

?#I,, + i; A 2 21= --r,A,, - r2Az1 = cz2 

We set a, = -1, then a, = s. 
Solving this system, we obtain 

A,, = A,(S) A, A,, = -&(S) & A,, = --h, (s) A, A,, = X1 (s)z (6.7) 

A-' = Pl'2 - w1= h - pLz) R,RlB, Ak (S) = rh. i- I@, & (s)= a,(s) 

Substituting (6.7) into (6.2) and (6.2) into (2.1), it follows from the condition that 
the multipliers for Q+(z) and 0-(z) are equal in the corresponding components (2.1) and 
(6.4) that 

(6.8) 

The connection (6.6) between ccICj and N, and formulas (6.8) generate the quadratic 
equations 

S” Im (P,'J,) + S Im (P,Q, + PzQ1) -/- Im (Plql) = 0 

N” Im (Q,QJ i- N Im (P,Q, + PeQ,) + Im (PIPz) = U 

(6.9) 

The roots of these equations are prely h3ginary. 

Let us show this. Substituting Pks rk, Sk from (2.11, (2.3) and (6.8), we obtain 

P, = +Loyl&~aA*, Q1= --p, = (~0 + Y,Z) A*, Pa = %Y,A' (6.10) 

A' = II - a (vo + ~12 + ~sdl-‘. ~PO = 1’1 + CLD YO = I/T’& 

Since Re (pd- I4 = 0, c < c*, BII > 0, the numbers pO>O,y,, A*,P,,Q1 are real, the numbers 

J',, Qa are imaginary, Im (P/J,) = Im (PnQ1) = 0. Hence, from (6.9) and (6.10) and taking account 
of the relationships (5.5), (6.41, (6.8), we have 

s = -A = iy$;;'*H, (c) 

Therefore, S and N are imaginary numbers for ~~10, c*l according to (1.5). 
The boundary values of the functions (6.3) and (6.4) take the form 

E&’ = -2~~ Im (pm,' - Q-m-), cII = -_2s,,Im (@+-CD-) 

Ebu' = -2Re (Q’@,* - Q-W), T_, = 2R13 (@+ _ cp-), 

E, = E, (c) = R, (c) R, (c) 

So = --is = f&;‘+i22-1’d?-zI* (c) I?,“2 (c), Q* z Q* (c) = [y. (1 t_ 

wo) + YlZl P-’ 

(6.11) 

Substituting (6.11) into (6.1) and taking account of (6.5) and (6.6) we obtain the 
combined Hilbert-Riemann problem solved in /l/ for a plane with the slits L, u L, U L, d L, 

Re a* (I) = -1/z (Q+ - Q-)-l IE,u, (4 + Q% (41, z E L, 

Im @* (5) = -I/* so-l (Q’ - Q-)-’ &u, (4 - Q%, (4, 5 E L, 

@+ (4 - Q’= (z) = --‘/,E, (s,Q+)-’ Isov,, (x) + iu, @)I, Q = Q-/Q+, z E L, 

a),+ (5) - @- (I) = ‘/2 IT, (x) - is,-‘uo @)I, 5 fz L, 

(6.12) 

Formulas (6.11) show that when the signs of the boundary stresses are preserved the signs 
of the boundary displacements, as for an isotropic half-plane, are opposite in the sub- and 
super-Rayleigh ranges (0,ck) and (CR, c*). Since E, (cs) = 0, then iu' + .s,u' # 0, by = hy = 0, 
for c=ca on the boundary Y = 0, which denotes the existence of a Rayleigh wave. 

We will investigate the behaviour of the singularities at points of boundary condition. 
separation during passage to the super-Rayleigh velocity. To this end, we will examine the 
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fundamental problem for an orthotropic 
s (L), v' = 0 for y= 0, where S(Z) is 
obtain directly from (2.1) and (2.3) 

T.Yu (I, 0) 

half-plane Y<O with the boundary conditions u'= 
the Dirac function. Solving the Dirichlet problem we 

PPOVO I,@ 1' B& (c) Rz (c) zl-' (I;. 13) 

The same problem in the form (2.1), (2.3) and (6.2)-(6.11) has the solution 

TJy (I> 'J) =~ --E,PuYa lxBQ+Q-zl-' ((j.24) 

Comparing (6.13) and (6.14), we obtain Q+Q-= -_I)-~I/&&~R~R,. Since R>(C) R, (c)# 0 for 

CE (O,C*), according to Sect.4, the function Q+(c)Q-(c) together with 8, (c) has just one- 
simple zero c=cR in (0, C'). Since the functions Q*(c) are bounded in (o,P), it follows 
that the function Q (c)r which is a coefficient in the Riemann conditions, changes sign only 
when c passes through cH. In IO. cR) the function Q (c) is continuous in 6/k and c, and 

Q (c)<O for c= 0 for an isotropic material. Consequently, even in the general orthotropy 
case Q(c)<0 for c E IO, CR). 

In view of the change in the sign of Q(c) from minus to plus, according to (6.12), the 
usual root behaviour of the stresses under the edges of completely adherent isolated stamps 
vanishes for c E IO, cl<) at super-Rayleigh velocities by conserving oscillations; the stresses 
under stamps are also bounded in the class of solutions having a bounded elastic strain energy, 
including even the isotropy case. The root singularities in the stresses under the edges of 
slipping stamps and stringers remain irrespective of whether they have common points with the 
totally adherent stamps or not /6/. 

7. We examine the problem of the breaking off of an infinite stamp from a totally 
adherent orthotropic half-plane moving at a sub-Rayleigh velocity by a concentrated force 

(Pl! -P2) applied to the free half-plane boundary at a distance a from the end of a crack 

z=y=O moving at the same velocity. We shall assume that the crack is closed in the 
section .rE [--b,O), y = 0 and that the contact coefficient of friction is zero, u(z) Q 0 
for .zEI--a,--b], and the intersection of the stamp and high-plane behind the force for s E 

(-a. -a) exerts a weak influence on the solution for X>-U and cannot be taken into 
account. 

According to (6.1) and (6.12), the boundary conditions of this problem 

(7.1) 

and the solution (2.1), (2.3) (6.2) generate a combined Dirichlet-Riemann problem (0 = 0 for 

I', = 0, P, > 0) 

(5.2) 

Using the method of Sect.1 in /6/, the canonical solution of problem (7.2) is obtained in the 
form 

0 < arg z .< 2n, 0 < arg (z + b) S 2n 

cp* (I) = *I (5). $J11 (2) = -2y In (1/-K'.z - 1 + 1/-b-‘z), 
z E (-m, -b) 

cp* (2) = +i hy - q2 (.z)l, & (2) = 2y arctg l/-z (b - x)-l, 
z E (--b, 0) 

‘pi (z) = tiny + Q3 (z), qr (5) = -2yln ()'b_'z + lfb-'s), 

z E IO, c=) 

For z=b the function X(z) is bounded and for z = 0 has a root singularity v>O, 
since 0< -Q< 1. Setting 

@ (z) = X (z) F (z), F (z) = F, (2) + F, (z) (7.4) 
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--iT 1/Qexp[- i(qa + 0)][4n(z -1. a)]-', ~#~=$~(--a) 

we obtain a Dirichlet boundary-value problem from (7.2) for a plane with a slit Im F,* (x) = 

-1m F, (I), I E L-b, O), where the desired function F,(z) should be constant as z+bc 
bounded at z = 0 and integrable for z = --b. This function has the form /7/ 

F,(z) = C, -t iD,Y,(z) - yo (4 I3 s In1 F. (t) dl 
x 

--b y0+ V) (I - 2) 

I’, (2) = z’:* (z + b)-“2, I-,* (z) = -t_ i (-5)“’ (.z + b)-‘1% 

where C, and D, are arbitrarv real constants. 
Evaluating"the integral /a/ 

f dt (I+a)Yo+(')('-q -- _+ 
- h 

; 1 z --- 
I yo (4 yo (- 0) 

.- 
-17 Yd--a)=1 &-- 

(7.5) 

(7.6) 

(7.7) 

we finally obtain 

@ (z) = X (z) IC, + iD,Y, (z) + T, (z + a)-’ + 
iT,Y,-l (-a) (z + $1 Y, (z)l 

iT, + T, = -(4$ T I/&"(ea+e) 

4, (z) - e+‘y (‘/4b)“‘z-“*-“’ IC, + iD, + 0 (z-l)], z + XJ 

Let there be no root field at infinity. Then C, = D, = U. 

'P(Z)== - 
T&u) 

4n (2 + a) 
sin ($L + 0) I/’ 4 f i cos (qa + 0) j/‘-s] 

Smooth adherence of a stamp at the point z = -b is ensured when the condition %I (- 
b) =O, or, according to (6.11) and (7.7), the condition cos($, + 0) = 0 is satisfied. 

Therefore 

Q, (I) = - (4n)-'T r/i sin ($). + f3) &(4 (z + a)-‘/7z-‘iz 

The stresses 

(7.8) 

on the slip section [--b,O) will be compressive for qn+ 0 = -'/an + 2kn, 
ny, cos ($a + 0) = 0. 

because O<$18(z)< 
It hence follows that the quantity b can have just a denumerable set of 

values F- - 
U - 2y In (v ab-’ - 1 + I/d’) = --l/*n + 2kn, k = 0, zIx~, 2, . ._. (7.10) 

According to the theorem on the existence and uniqueness of the solution of a contact 
problem with unilateral constraints /9/, not more than one value of k, determined by the 
condition of non-intersection u(z)<0 for z ~(--a, -b) can correspond to any contact mode. 
Since v (-b)=O, this condition is satisfied if, in particular, u'(z)>0 in (-%,-b]. 

We will show that actually u'(z)>O. Using (7.8) and (7.3), we have in I-u, --bl 

U' (2) = --T IhE, (Z f .)I” f-3 (Q+ - Q-) sin qz (z) (7.11) 

h' (z) = Y (9 + W+ > 0, z E [--a, -b] 

By virtue of (7.31 and (7.11), 
in (-%-b], v (-b)LO, 

the function ql(x)is continuous and increases monotonically 
therefore $. <~,(s)<o, or taking (7.101 into account, we obtain -e- 

'Ia" f 2k.x < *I (z) d 0. Since Q+>Q-, hence and from (7.11) under the condition 
obtain 

V' (I) > 0 we 
---II <q,(z) < 0. It follows from these inequalities, written in the form --n g 

3k.X - e1 - '/$l & 0, and the constraint ]13]<n, that k = 0, --Vpn -< 0 <‘lg. This last inequality 
means that the solution naturally does not exist for P,<O. 

The length of the slip section is determined from (7.10) for k = 0: 
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b = a ch-z I'/, ('/*n + 0) y-l] 

Its largest and smallest values are attained for U = t'/$. In the former case b=a 
and the slip goes to the point I = --a, while in the latter case intersection of the stamp 
and half-plane starts at once behind this point, which is in agreement with the Cerruti sol- 
ution. 

Let us calculate the stresses and their asymptotic formson thecontinuation of the moving 
crack. Taking into account that sin&, + 6) = --1, for k=D in (7.8) (as also in (7.9)), 
we obtain for s >(I 

@* (s) = *TljaI4n (X + a) j&Y exp [Tnv + iqs (~$1 

Hence, and from (6.11), it follows that 

Therefore, the crack propagates only because of shear fracture, where the sign of the 
shearing force P, itself has no influence on the stress intensity factor according to (7.2). 
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